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$ Department of Mathematics, Harvard University, Cambridge, MA 02138, USA (present 
address), and LOMI, Fontanka 27, Leningrad, 191011, USSR 

Received 31 May 1989, in final form 20 July 1989 

Abstract. The spectrum of row-to-row transfer matrices in critical RSOS models of A,, type 
is described explicitly. The thermodynamics of the quantum one-dimensional RSOS model 
is used to compute values of central charges in corresponding conformal field theories. 
Generalisation of these results on RSOS related to arbitrary simply laced algebras is 
discussed. 

1. Introduction 

In the present paper we study a generalisation of the restricted solid-on-solid (RSOS) 

model [l]. From the point of view of the underlying algebraic structure, the RSOS 

model is related to a deformation of the universal enveloping algebra sl(2) [2]. In 
addition, the RSOS model can be considered as an eight-vertex model with special 
boundary conditions using a specific construction of intertwining vectors [3,4]. This 
construction was recently generalised by Jimbo, Miwa and Okado [5] (JMO)  to the 
case of sl(n) algebra. These authors related the Belavin vertex model [6] with a new 
interaction-round-a-face ( I R F )  model whose states are dominant weights of SI( n). In 
some sense the J M O  model corresponds to the simplest vector representation of sl( n). 
In fact, one can further generalise [7] the J M O  model to arbitrary representations using 
the fusion procedure [7-91. The Boltzmann weights of these generalised J M O  models 
depend on a rapidity variable U, a temperature-like variable q (elliptic nome), an 
integer r (similar to those of the RSOS model [I]) and two representations of sl(n) 
specified by Young diagrams A = ( A , ,  . . . , A n - l ) ,  p = ( p ,  , . . . , P , - ~ )  such that A,  s r - n, 
pi G r - n, i = 1, . . . , n - 1 .  The models become critical when q = 0. In this case there 
are at least two physically distinct regimes 

O c u c r r / 2 r  -x /2 r  s U =S 0. (1.1) 

We consider the critical case. Using some specific properties of the Boltzmann weights 
we obtain a system of functional equations which allows us to calculate exactly 
the spectrum of the transfer matrices TA-& ( U), generalising the result of [ 101 where the 
case n = 2 was considered. As usual, the eigenvalues are determinated through the 
solutions of a system of transcendental equations. 

In [ 111, Belavin, Polyakov and Zamolodchikov have developed a conformal boot- 
strap program to classify possible types of universal critical behaviour and to calculate 
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critical exponents. According to this approach, the critical behaviour of a two- 
dimensional statistical system at a second-order transition point is described by some 
unitary [ 121 conformal field theory, specified by the value of the central charge of the 
Virasoro algebra of conformal transformations. The parameters of this conformal 
theory can be extracted from the spectrum of the transfer matrix of the statistical 
system [13-151. 

Consider the one-dimensional quantum model of a chain of N sites defined by a 
(local) Hamiltonian 

d 
du 

H = & - l o g  Ty(u) l .="  

where A = ( I , .  . . , ( 0 , .  . . , 0) is the dominant weight of some fixed representation of 

sl( n ) .  
In the critical case this Hamiltonian has a gapless spectrum with the linear dispersion 

law in the vicinity of the Fermi level ~ ( p )  = uFJp -pFJ. The value of the central charge, 
c, of the corresponding conformal field theory may be calculated [13-151, on the one 
hand, from the leading finite-size correction to ground-state energy of the Hamiltonian 
(1.2) with periodic boundary conditions 

- 
ptimes 

(1.3) 

and, on the other hand, from the low-temperature asymptotics of the specific free 
energy of the quantum system with the Hamiltonian (1 .2)  at N + m 

T~ e-PH = e - P N F ( P I  

( 1.4) 

where p = T-'  is an inverse temperature. We take the second method and investigate 
the thermodynamics of the model (1 .2) .  In doing this, we use some hypothesis on the 
types of allowed string solutions to the transcendental equation determining the 
spectrum of Hamiltonian (1.2) within the thermodynamical limit. The results for the 
central charges for the two critical regimes E = f 1 corresponding to the different choices 
of the sign of the Hamiltonian (1.2) are of the form 

(n' - 1)1 ( n(  n + 1 ) )  
n + l  r ( r - 1 )  

c=- 1 -- E = - 1  

& = + l e  1 ( r  - n ) ( r -  n + p )  
r ( r  - p )  

[ ( r -  n ) ' -  l ]p 
r - n + p  ( 1 - 

C =  

( 1 . 5 4  

(1.5b)  

When n = 2, formulae (1.5a, b )  reproduce the results of [lo]. In the case p = 1 = 1 ,  
( 1 . 5 ~ )  reproduces the result of [16]. The conformal field theories with the latter central 
charge were constructed in [ 171. Note that under the transformation p t ,  1, n + r - n 
the expressions ( 1 . 5 ~ )  and (1 .5b)  for the above regimes are interchanged. This is a 
reflection of the duality properties of the Boltzmann weights [ 161. 

We observe that the basic equations of the thermodynamics calculations for the 
model (1.2) are formulated entirely in algebraic terms (i.e. root system, Canan matrix, 
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etc). It is easy to generalise these calculations for the case of D-E-type algebras and  
calculate the corresponding values of the central charges. Apparently, these results 
are related to the D-E-type I R F  models found in [18]. We have not yet established 
this relation and  claim it as a conjecture. 

The paper is organised as follows. In Fj 2 we formulate the J M O  model and discuss 
the corresponding representation of the Hecke algebra. In § 3 we consider the fusion 
procedure and  calculate the eigenvalues of the transfer matrices. In § 4 the thermody- 
namics of the one-dimensional model (1.2) is investigated. Section 5 contains the 
conjectured results for the D-E-type algebras. In this paper we omit most of the 
details of the calculations. These will be published separately. 

2. The model 

We consider the J M O  model [ 5 ] .  This is an interaction-round-a-face model on a plane 
square lattice where the fluctuation variables, assigned to the lattice sites, take values 
in the set of dominant weights of the s l ( n )  algebra. 

2.1. Basic notation 

Let {ai} and { U , } ,  i = 1, . . . , n - 1, be sets of simple roots and fundamental weights of 
s l (n)  algebra [19]: 

a, = E ,  - & , + I  (2.1) 

(2.2) 

(U,, a,) = a,, (2.3) 
where ( , ) denotes a scalar product and { E , } ,  i = 1 , .  . . , n, is an orthonormal basis in 
R". The weight 

n - l  

X =  C m,w, m, 3 0  
, = I  

(2.4) 

where { m , }  are non-negative integers is called dominant. Fix an integer L ?  1, and  
denote by P+(n, L )  the set of dominant weights obeying the requirement 

n - l  

C m , s  L. (2.5) 
, = I  

We call 
diagram of 
A ,  - A n  s 15, 

an element of P+(n,  L )  a focal state. It can be visualised by a Young 
depth s n .  F o r a d i a g r a m  h = ( A ,  , . . . ,  A,,) w i t h A I 3 A ,  ~ . . .  ~ A , 3 O a n d  
where A ,  is a number of nodes in the ith row, we set 

n - l  

= C ( A ,  - A , + l ) w i  = Aiej E P+(n, L )  
, = I  , = I  

where 

(2.7) e; = E ,  - E 

with E defined by (2.2). Two diagrams represent the same element of P+(n, L )  if and  
only if one is obtained from the other by removing a column of length n. 
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An ordered pair of local states (a, b ) ,  a, b E P+( n, L ) ,  is called admissible if 

b = a + e i  for some i = 1 , .  . . , n. ( 2 . 8 )  

For each such pair we place an arrow from a to b, to make P+( n, L )  an oriented graph 
(figure 1 ) .  

Let p be a half of the sum of positive roots of sl( n )  [ 191 

where c x k ,  &k and wk were defined by ( 2 . 1 ) - ( 2 . 3 ) .  For the state i given by (2 .6) ,  introduce 

(2.10) 

2.2. Boltzmann weights 

Consider a square lattice 2' of M rows and N column. With each site x E 2' associate 
a 'fluctuation variable' which takes values in the set P+(n, L) .  

Let ul, u2 be unit lattice vectors (directed right and down, respectively). We say 
that the configuration of states of the whole lattice is admissible if any pair of the 
adjacent local states of the form ( A x ,  A,,,,), x E 2; i = 1 ,  2 is admissible in the sense 
of ( 2 . 8 ) .  

Using this definition one can show, that for toroidal boundary conditions there are 
no admissible configurations of the whole lattice, unless 

M = nM, N = nN, ( 2 . 1 1 )  

where M I ,  N I  are integers. 
Let W ( 2  2,) denote the Boltzmann weight corresponding to a configuration an 

bf ,  cf, d, round a facef (ordered anticlockwise from the SW corner, as shown in figure 2). 
The partition function is defined as the sum over all the admissible lattice configur- 

ations with the weight equal to the product of Boltzmann weights over all lattice faces 

e3 El 

(2.12) 

Figure 1.  The graph representation of the set of local states f+(3,3) ( n  = 3, p = 3 ) .  The 
admissible pairs of the states (a, b )  are shown by the arrows from a to b. 
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Figure 2. Correspondence between states and vertices. 

The non-zero weights are given by [5] 

( 2 . 1 3 ~ )  

w( ) = p h ( A ,  + u)h( l ) /h (A, )  ( i  # j )  (2.13b) 
i - t e ,  i + e , + e ,  

) =-ph(u)h(A,,+l)/h(A,,)  ( i  # j )  ( 2 . 1 3 ~ )  

where p is a normalisation factor, A, was defined by (2.10) and 
ot 

h(u)=s in(uq)  n [ ( I  -2qZk C O S ( ~ T ) U ) + ~ ~ ' ) ( ~  -q2k)I  (2.14) 

T )  = n / r  r = n + L .  (2.15) 

Note that, up to a factor 2q1'4, h ( u )  coincides with a standard elliptic theta function 
6,(r]ulq) of argument UT) and nome q. 

In the present paper we shall consider the trigonometric case only, setting q = 0. 
Then we have 

h(u)=s in  UT) = s i n ( m / r ) .  (2.14') 

Thus, in the trigonometric case, the Boltzmann weights depend on two integers 
n 3 2, r 3 n + 1 and two continuous parameters p and U. Regarding n, r, p as constants 
and U as a variable one can write weights (2.13) in the form W(ti1u) .  For the particular 
case n = 2 ,  the JMO model coincides with the RSOS model of Andrews, Baxter and 
Forrester [ 11. 

k - l  

2.3. Hecke algebra 

Let (a,,, . , . , be a sequence of local states, such that any pair ( a i ,  ai + 1 )  is 
admissible in the sense of (2.8). Define a set of operators Wi(u), i = 1 , .  . . , N, acting 
in the space of these sequences 

(2.16) 

With these operators the Yang-Baxter equation (YBE) takes the form 

W,(U) W,+I(U + U )  WI(U) = W,+,(U) WI(U+ U )  W,+,(U).  (2.17) 

Using (2.11)-(2.14') one can show that 

W, ( U )  = e'"" - e-'"" RI sin( ug)/sin T )  (2.18) 
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(2.19) 

In fact the first two relations are equivalent to the Y B E  (2.17) for Wi(w) of the form 
(2.18), and the third is obvious. At this point one recognises that (2.19) gives a 
representation of the Hecke algebra H,,, [21]. Actually, we can say more. Namely, 
we obtain the representation of the quotient of the Hecke algebra in which the following 
relations are satisfied: 

Pi+ ,( i, . . . , i + n ) = 0 V i  (2.20) 

Vi k = L + l , .  . . , n + L - 1  (2.21) 

where the integers n, L are the parameters of the model defined in section 2.1. Here 
P: is the q analogue of the full Young (anti-)symmetriser [7,9] 

Pi ( i, . . . , i + k - 1 ) = 0 

( P & ) 2  = P; (2.22) 

=sin v W,(*tl)/sin(/+ 1)v. 

The ordered product in (2.23) is defined as 
m n Ak = A l  . . . Anl. 

k = l  

(2.23) 

(2.24) 

(2.25) 

One can prove the relations (2.20), (2.21) using the explicit form of the Boltzmann 
weights (2.13). As is well known [25], the solutions of the Yang-Baxter equations 
described above are connected with quantised universal enveloping algebras U,(sl( n)), 
but here we do not discuss this. 

3. The eigenvalues of the transfer matrices 

Starting from the model described in the previous section one can construct, using 
the fusion procedure [7-91, a class of more general models [7]. These models have 
the fluctuation variables both on sites and edges. Fix two representations of sl(n) 
with dominant weights ai E P+(n, L ) ,  i = 1,2.  Consider the configuration shown in 

0 a b 

Figure 3. State corresponding to the Boltzmann weight W"I~":( fa):$.  
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6;11 

"2' -- 

6ip1-1 

"1:l -- 

figure 3 and denote the corresponding Boltzmann weight as W i ' l q f L 2 ( ~ i ) ~ $ .  As before 
a, b, c, d E P+(n, L ) ;  however, the admissibility condition now reads 

I * I  - A r I t 

. .  --+ -- 
\ I ClP; 

+ -- 
~ " a; 

U!--+-- +-- . . .  
4- -- -I- -- 

I I 

. . .  . . -- 
I I 

I 
I a . .  

* I  I 
* I  I 

I I 
1' ' ''p;pl.l 

' *  -- + -- . .  . + -- -+ -- 
e l  - A - A 4 

where A, is the state of the site x E 2, i.e., the representation [A,,,,] should be contained 
in the decomposition of the direct product [A,]@[n,]. The edge variable ax,l corre- 
sponding to the edge (x, x + U,) takes on the values in the space of multiplicities w,,,+', . 
It fixes the embedding of [A,,,,] in [ A , ] @ [ f l , ] .  If R ,  is a symmetric tensor or 
antisymmetric tensor, the decomposition (3.1) is multiplicity free and all the edge 
variables for edges directed along U, are irrelevant. The weights (2.13) correspond to 
the case fl, = fl, = w ,  = (1,0,. . .). 

Introduce some notation. Let A = ( A , ,  . . . , A n - , )  be a Young diagram with I A l =  C A,  
nodes. Define a shift tableau BA by writing the integer 

bA(i,  j )  = A l  - i + j -  1 (3.2) 

at each node (i, j )  of the diagram ( i  and J indicate row and column, respectively). 
Define a hook length at x = (i, j )  E A 

h A ( i , j )  = A ,  + A j + i - j -  1 (3.3) 

h " A I I - A i - 1  (3.4) 

and a hook length of A 

where A: is the length of the j th  column of A. Obviously, the maximal element of BA 
is equal to h"1. Let { u A } = ( u { ,  . . . ,  ufAl) be a sequence of b A ( i , j )  ordered 
lexicographically in i and j .  Fix now two Young diagrams A and p and consider the 
partition function (2.12) for the inhomogeneous lattice of ( l A l +  l ) ( lp l+  1) sites shown 
in figure 4, assuming the boundary states fixed. The numbers {U:} and {U?} near the 
broken lines show the shift of the rapidity variables, so that the face located at the 
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intersection of the utth and urth lines has the weight W ( u - u ~ + u ~ ) .  Denote this 
partition function as 

(3 .5)  

Then the weight W“” is given by [7] 

where the sum is taken over all the primed states {a’}, { P ’ } ,  { y ’ } ,  {a’}; P A  ( P ” )  is a q 
analogue of the Young symmetriser corresponding to diagram A ( p ) .  The full sym- 
metriser Pmwl = P ;  and antisymmetriser P”11i = P ,  are given by (2.23). The general 
expression can be found in [7,9]. The function F(u) in (3.6) is defined by 

F ( u ) =  n F ” ( u + b ” ( x ) )  
X E P  

(3.7) 

(3.8) 

where h ( u )  and b A ( x )  are defined by (2.14) and (3.2) respectively. Let T $ ( u )  be an 
N-site row-to-row transfer matrix (for periodic boundary conditions) constructed from 
the weights W A F (  U). The fusion procedure implies various relations between the 
transfer matrices TA” with different values of p. For example, 

T A + y U ) T ” . ” l ( U +  1) = T A J ” l ( U ) +  T A * ” 2 ( U ) .  (3.9) 

The full set of such types of relations contains, in fact, the more general irreducible 
transfer matrices TAT” where p is a skew Young diagram [9]. We restrict ourselves to 
the ordinary diagram p. Excluding these ‘unwanted’ transfer matrices one can express 
TA+ through the set of the transfer matrices { TA3kwl},  k = 1,2,  . . . , corresponding to 
the symmetric tensors or through the set of the transfer matrices { TA*wh}, k = 1,  . . . , n, 
corresponding to the antisymmetric tensors 

(3.10) 

(3.11) 

where by definition TATkwl( U )  = 0 for k < 0, T“9kwl( U )  5 1 for k = 0, TAqWo( U )  = 1, 
T”+’L(u)=O for k >  n or k<0. The hook length h ( i , j )  is defined by (3.3) and 
p’=  ( p i ,  p i ,  . . .) is a Young diagram obtained from p by transposition with respect 
to the NW-SE diagonal. One can show that for the completely antisymmetric rep- 
resentation w, = ( 1  1 )  U 

TA+’ ( U )  = detll TAls(Fl+’-’)‘“~( u + h” ( 1 ,  p))  - 1 )  1 1  
TA+( U )  = det 11 TAl.”r.,-,+r( U + h”’ (  1 ,  pj)  - 1)11 IG,,ls , , l  

n times 

T ~ ” ~ ~ (  U )  = (D” ( u ) ) ~ E  (3.12) 

@(U) = fi h ( u  - A i  + i - 1 )  
i =  I 

(3.13) 
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where E is the unity operator. The formulae (3.10) and (3.11) are equivalent in the 
sense that each of them is a consequence of the other. One can consider these formulae 
as 'quantum analogues' of the second Weyi formula for the characters of sl(n) (see, 
e.g., [21], equations (3.4), (3 .5 )  of chapter 1 ) .  Note that (3.10)-(3.13) hold also for 
Belavin's vertex model [6] (or for Cherednik's model [22] in the trigonometric case). 

A remarkable feature of the considered model is the existence of additional simple 
relations for the transfer matrices 

(3.14) 

which are the consequences of the vanishing of the corresponding symmetrisers (2.21). 
Choose the normalisation p = exp(iqu) in (2.13). From the definition (3.6) it 

follows, that T?(u)  is a polynomial in e"'" of a degree NIpI. Since, the transfer 
matrices T h w ( u )  form a commuting family 

(3.15) 
their eigenvalues A$( U )  are also polynomial of the same degree which obey the same 
set of equations (3.10)-(3.14). These properties are sufficient to find all the eigenvalues 
A*"( U). Omitting the calculations we describe the results. 

We introduce some more notation. Define a set of standard tableaux Tab(A) 
associated with diagram A. The tableau T E Tab( A )  is formed by integers { r ( x ) } ,  x E A ,  
1 d t ( x )  =s n, written in squares of the diagram so that 

t (  i, j )  < t ( i + 1,  j ) .  (3.16) 

k = r -  n +  1 , .  . . , r -  1 0 

[ Tk+( U), Th"( U ) ]  = 0 

t (  i , j)  3 t (  i, j + 1)  
Figure 5 shows all the standard tableaux for the diagram A = (2, 1 )  for n = 3. 

The eigenvalues A: are given by 

A ,̂. = n X " " ' ( u + b w ( x ) )  
T e T a b ( p )  X E ~  

(3.17) 

where b w ( x )  is defined by (3.2), 

(?'-I (  U - l ) Q ' (  U + 1 )  
Q ' - ' ( u )  Q'( 24) 

X ' (  U )  = w,  f(w -A,) i =  1 , .  . . , n (3.18) 

and where h ( u )  is defined by (2.14), 
9, 

k = l  
@(U)= n h ( u - U : " )  

n - i  
qi =- N. 

n 

(3.20) 

(3.21) 

It remains to define the numbers { w i }  and {U:'}. One can show that T"*w(u)  commute 
with the operator 

(3.22) 

Figure S. Standard tableaux for the diagram A = (2, 1).  
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where 6= ( r  - n - t ~ , , - ~ ,  b,  - b n - l ,  . . . , bn-2 - b n - l ) .  Hence, the eigenvalues Ahe(  U )  split 
into sectors labelled by eigenvalue 0 of Y. 

The number { U , }  are arbitrary modulo the relations 

w : = n  W I  . . . w ,  = 1 w ,  # i#j (3.23) 

and the numbers {U:”} are the solutions of the system of equations 

Q L t l ( U ( k l +  1 ) Q J ( u i ’ -  l )Q’- ’ (u i ) )  
= -  i = 1, . . . , n. (3.24) wf( ~ ( k  I - A,  I 

~ , + l f ( ~ t ’ - A , + , )  Q ‘ + ’ ( U ( k ’ +  l ) Q ’ ( u ( k ’ ) Q ’ - ’ ( U ~ ’ -  1) 

The formula (3.17) for the eigenvalues of the transfer matrix in the corresponding 
vertex model was obtained by Kirillov and Reshetikhin [26]. 

4. Thermodynamics of the one-dimensional model 

In this section we consider the thermodynamics of the one-dimensional critical quantum 
model defined by a (local) Hamiltonian 

~d 
H =- 47r -log du 7-y(u)lu=-p+l - Eo (4.1 

where A = ( /  , . . . ,  1,0 , . . . ,  0), ~ = * l ,  1 S p S n - 1 ,  1 S l S r - n - 1 ,  and calculate the 

low-temperature asymptotics of the specific heat capacity. This is equivalent [ 14, 151 
to the calculation of the central charge of an effective conformal field theory describing 
the critical behaviour of the model. 

When N + m  and U - (1  - p )  the dominant term in the sum (3.13) corresponds to 
the tableau T with the integers k in all the squares of the kth row. Thus, we have 

- 
p times 

Q P ( U +  I + p  - 1) 
. P ( u ) ~ ~ - ~ - ~  = @ ( e )  + O ( e P N )  6 > 0  

Q P ( U  + P  - 1) 
p-1 I-1 (4.2) 

@(U)= n f ( u - l + k + m )  
k = O  m = O  

where f ( n )  is given by (3.19). Choosing Eo in (4.1) 

we obtain for the spectrum of H 

8 = E  2 al,,(a(kp)) 
k = l  

up ’  = 1 2(I-iakP’) 

1 d sin(.r](l+ia)/2) 
47ri d a  sin(.r](/- ia)/2) 

a , * , ( a )  =--log 

(4.3) 

(4.4) 

(4.5) 

where the numbers {U:”} are the solutions of the system (3.24). 
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At N + CO these solutions form the strings [23] 

j-strings: a"'"' 1. m = piA1" - i (  j + 1 - 2m) 

m =  1 , .  . . , j  j =  1,.  . . , r -  1 (4.6) 
l--strings: , i k J ( - !  = p ,  I h ! ( - l  + i r  

where { p }  are (real) centres of the strings. We suppose that the number of j-strings, 
NI ,  with j = r - n + 1, . . . , r - 1, and the number of 1--strings, N-, remain finite when 
N + CO. More precisely, we suppose that 

lim ( N - / N )  = lim ( N , / N )  = 0 j = r - n, . . . , r - 1. (4.7) 
"r N - x 

This conjecture is based on the analogy with the s1 (2 ) -~sos  model [ lo]  and on the 
analysis of some particular cases (for example, hard hexagons can be considered as 
the r = 5 ,  n = 3 case). 

In the thermodynamic limit the centres of the strings form continuous distributions 
and system (3.24) leads to the following integral equations for densities of the strings 
p : ( p )  and densities of 'holes' p':(p) 

r - n  n - l  

& p ~ : ; l ( a )  =; ; (a )+  A;;!* ~ $ ) * p ; ( a )  
k = l  h = l  

where a * b denotes the convolution of functions a and b 
X 

a * b ( a ) = /  a ( a - p ) b ( p ) d p .  
- X  

The functions a;,;(a) and Aj:i(a) are defined via their Fourier transforms 

(4.8) 

(4.9) 

1 
2 cosh x 

.^y;(X) = s*(x)A;:;(x) s*(x) = - (4.10) 

sinh( ( r  - j ) x )  
sinh( rx) c;,(x) = &(x)  = coth x sinh(kx). (4.12) 

We use the following normalisation of the Fourier integrals: 

The function K 2' is defined by 

I?:",( x) = &h + s ( x ) (  CO, - 26,h) (4.13) 

where Cub is the Cartan matrix of sl(n). From (3.21) it follows, that 
r - n  

mp^k(O) = i(C-'la,,. 
m = l  

This relation together with (4.8) with j = r - n imply that 

m = 1 , .  . . , n - 1. 

(4.14) 

(4.15) 

From the positivity of the density p'y-,, this implies p'y-"_, = 0, i.e. for the ( r  - n)-strings 
the holes are absent in any state. 
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E5cluding now ~ ? - , , ( a )  from (4.8), inverting the operator and using the fact 
that A(k:-n)(~)  = ( ( K ' r - n ) ) - ' ) k , ,  we find 

n - 1  I - n - l  

For the energy (4.5) we thus obtain 

(4.16) 

(4.17) 

where 

Note the remarkable symmetry of (4.16) and (4.17) under the interchange n c ,  

The equilibrium state is obtained by a minimisation of the free energy functional 
( r  - n), E + - E ,  pp and p c, 1. We call this the duality. 

F ( p )  = - TSb) 

where S ( p )  is the combinatorial entropy of the 'gas' of particles and holes [23]. 
Omitting the standard calculations we obtain the equilibrium free energy 

where p = 1/ T and the functions E ; (  a )  = T log(F;/p;) are the solutions of the follow- 
ing system of the nonlinear integral equations: 

r -n- I  n - l  

~s8,,8,,= KL;"'* Tln(l+eP'f t ) -  1 K ~ ' * T l n ( l + e - P ' ~ ) .  (4.19) 
m = l  h = l  

Note again the duality symmetry of these equations. 
Using (4.18) and (4.19) one can find the leading term of the low-temperature 

asymptotics of the entropy. Proceeding exactly as in [lo] where the case n = 2 was 
considered, we obtain the asymptotics in two regimes: 

S ( T ) =  --(C"~,-t(r-n)-C",,-, ( I )  - c " ~ ~ - ~ (  r - I - n) - ( n  - 1 )) 

S ( T )  = - ( c " , , - , ( r - n ) - C " , - l ( r - , ) -  ~ " n - p - t  ( r -  n)) 

4rrT 
3 

47rT 
3 

(4.20) 

where An- ,  denotes the root system of sl(n). For further generalisations to the D and 
E root systems define C'(m)  for any A - D - E algebra. Let {fp}, j = I , .  . . , m - 1, 
a = 1, .  . . , rank( 9) be solutions to the equations 

(4.21) 
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where C’ is the Cartan matrix of 3. Then 

where L ( x )  is the dilogarithmic Rogers function 

) dY. 
L(x )=  -2 s, (F Y 

1 log y+log(l  - y)  

As was shown in [24], for 3 =A,-, , 
n ( n  - l ) ( m  - 1) 

m + n  
cArz-l(m) = 

Using the relations 

C ( T ) = T  - = - 7 -  - (3 (3 
and (1.4), we obtain 

T C  4 T C  

3 OF 3 
C ( T ) = -  T + o ( T ) = -  T + o ( T )  
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(4.22) 

(4.23) 

(4.24) 

(4.25) 

where vF = a for our normalisations of the Hamiltonian. 
Comparing (4.20), (4.24) and (4.25) we readily obtain the result (1.5) for the central 

charge, c, quoted in Q 1. The ground state at E = 1 is the Dirac sea of ( r  - n - 2)-strings 
and at E = -1 the ground state is the Dirac sea of 1-strings. For the energy of the 
ground state from (4.18) and (4.19) we have: 

E = l  &= go 

E=-1 8 0 s  = -8; 

where go, 8; are given after (4.17). 

(4.26) 

5. Generalisations to the case of simply laced Lie algebras 

The calculations of the free energy and central charges were performed in section 4 
for the model related to the A,-, algebra. One can formally generalise these calculations 
to the case of arbitrary A-D-E-type algebras. 

It is known [25] that the critical RSOS models, corresponding to the A-type Lie 
algebras can be obtained from the corresponding vertex models using the q-analogue 
of Racah-Wigner calculations [26]. This procedure has a generalisation to arbitrary 
semisimple Lie algebras (in preparation). As we have shown above, the eigenvalues 
of the transfer matrices of the RSOS model has the same structure as in the corresponding 
vertex models. The difference is only in the special structure of phases w i  in (3.18) 
and in restrictions on the numbers of pseudoparticles qk (equation (3.21)). Let us 
suppose that the same picture holds also in the case of D-E-type Lie algebras. 

The Bethe equations for the vertex models [27-291 corresponding to simple Lie 
algebras are known [30]. If the spins in the model are characterised by the highest 
weight A = lw, of the algebra then the Bethe equations have the form: 

‘ 1  s inh (7~ /2 r (a~” -  aL’+iC:)) cl sinh(?r/2r(a:”)-a~’-iC:)) 

sinh(7~/2r(a~”+il6, ,))  N 

(sinh( v /2r (u j i )  -i&,)) ) 
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Our first conjecture is that the eigenvalues of the transfer matrices and the Bethe 
equations for the RSOS models for arbitrary % have the same structure as the eigenvalues 
of the corresponding vertex models (with appropriate phases U , )  which are known for 
D, and E6 [31]. Second, we suppose that at N + CO the solutions of the Bethe equations 
have the structure (4.6) and (4.7) with n replaced with the dual Coxeter number of 3. 
Define the Hamiltonian of RSOS(%) models by the same formula as the sl(n) (4.1). 
Then, using the result of [30,31] one can show that the eigenvalues of this Hamiltonian 
should have the form (4.4), (4.5) with the a determined by (5.1). 

After these speculations we can consider the thermodynamics limit in the spectrum 
of the RSOS(%) model. It is not difficult to verify that in the thermodynamic 
limit, we obtain a system similar to (4.16) for the densities of pseudoparticles pp and 
holes p’p 

(5.1) 

where K,”h is defined by (4.13) with CZ’ replaced by the Cartan matrix, and g is the 
dual Coxeter number of the algebra %. Exactly the same modifications are necessary 
for the thermodynamic equations (4.19). For the free energy we also obtain the same 
expressions as (4.18) with n replaced by g. 

In the limit T +  0 we obtain the following asymptotics of the entropy for two regimes: 

( 5 . 2 )  

where g is the dual Coxeter number, C ” ( m )  are defined by (4.22), the algebras 
are subalgebras of 3. The Dynkin diagrams of are obtained from Dynkin diagram 
of % after removing the vertex corresponding to the fundamental weight U,,. An 
example for % =  D, is given in figure 6. We verify by numerical calculations the 
following identity (for D-E-type algebras): 

m dim % c ’(m) = -rank %. 
m + g  

(5 .3)  

Remember that for % = An-l this identity was analytically proved early [24]. Moreover 
A N Kirillov has informed us that he has an analytical proof of this identity for % = D,. 

/On-’ 
%n 

o-O-...* 0 -,.. 
1 2 3 p-1 p p.1 p.2 

Figure 6. 
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So, we obtain that the scaling properties of RSOS( 3) models discussed above are 
described by conformal field theories with central charges corresponding to the 
Goddard-Kent-Olive construction: 

4 c = - ( C '  ( r -  g) -  C '(1) - C " ( r -  I -  g)-rank %) E = - 1  

c = ~ ' + ( r - g ) - C  C'=(r-g)  & = + l o  
0 

The ground states for RSOS( 3)  models for simply laced algebras have the same structure 
as the RSOS(A,-,) model. For E = 1 this Dirac sea consists of ( r  - g)-strings, for E = -1 
it consists of 1-strings. The energy of ground state can be obtained from the thermody- 
namics of the model and it has the same structure as for ie = A n - i .  

6. Conclusion 

In this paper we considered the RSOS models connected with simply laced algebras. 
We do not consider an inhomogeneous model. But it is not difficult to see that if we 
have a chain of spins with representations (I , ,  p , )  . . . ( I k ,  pk), we obtain a model 
corresponding to the coset construction of the type x . . . x %m. So we can hope 
that the RSOS( 3)  models in the scaling limit give all known conformal field theories. 
All the details omitted here will be given in the extended version of this paper, where 
we shall consider also a connection between the RSOS(%) models and integrable 
off-critical specialisations of the conformal field theories. 
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